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1. Introduction

The Higgs mechanism is a cornerstone of the Standard Model (SM) and its supersymmetric

extensions. The masses of the fundamental particles, electroweak gauge bosons, leptons,

and quarks, are generated by interactions with Higgs fields. The search for Higgs bosons

is thus one of the most important endeavours in high-energy physics and is being pursued

at the upgraded proton-antiproton collider Tevatron with a centre-of-mass (CM) energy of

1.96 TeV, followed in the near future by the proton-proton collider LHC with 14 TeV CM

energy.

Various channels can be exploited to search for Higgs bosons at hadron colliders. Higgs

radiation off bottom quarks [1]

pp̄/pp → bb̄φ0+X (1.1)

is the dominant Higgs-boson production mechanism in supersymmetric theories at large

tan β, where the bottom-Higgs Yukawa couplings are, in general, strongly enhanced. With

φ0 = H, h0, H0, A0 we denote the SM Higgs boson or any of the neutral Higgs bosons of the
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Minimal Supersymmetric Standard Model (MSSM). Current searches for MSSM bottom-

Higgs associated production at the Fermilab Tevatron widely exclude values tan β >∼ 50 for

light MA0 ≈ 100GeV [2, 3], depending in detail on the value of the Higgs mixing parameter

µ.

Two different formalisms have been employed to calculate the cross section for asso-

ciated bb̄φ0 production. In a four-flavour number scheme (4FNS) with no b quarks in

the initial state, the lowest-order QCD production processes are gluon-gluon fusion and

quark-antiquark annihilation, gg → bb̄φ0 and qq̄ → bb̄φ0, respectively. The inclusive

cross section for gg → bb̄φ0 develops large logarithms ∼ ln(µF /mb), which arise from the

splitting of gluons into nearly collinear bb̄ pairs. The large scale µF ∼ Mφ0 corresponds to

the upper limit of the collinear region up to which factorization is valid. The ln(µF /mb)

terms can be summed to all orders in perturbation theory by introducing bottom parton

densities. This defines the so-called five-flavour number scheme (5FNS) [4]. The use of

bottom distribution functions is based on the approximation that the outgoing b quarks

are at small transverse momentum. In this scheme, the leading-order (LO) process for the

inclusive bb̄φ0 cross section is bb̄ fusion,

bb̄ → φ0 . (1.2)

The next-to-leading order (NLO) cross section in the 5FNS includes O(αs) corrections to

bb̄ → φ0 and the tree-level processes gb → bφ0 and gb̄ → b̄φ0.

To all orders in perturbation theory the four- and five-flavour schemes are identical, but

the way of ordering the perturbative expansion is different, and the results do not match

exactly at finite order. However, numerical comparisons between calculations of inclusive

Higgs production in the two schemes [5 – 8] show that the two approaches agree within

their respective uncertainties, once higher-order QCD corrections are taken into account.

There has been considerable progress recently in improving the cross-section predic-

tions for inclusive associated bb̄φ0 production by calculating NLO-QCD [5, 7] and SUSY-

QCD [9] corrections in the four-flavour scheme, and NNLO QCD corrections [10, 11] in

the five-flavour scheme. The inclusion of higher-order effects is crucial for an accurate the-

oretical prediction and, eventually, a determination of Higgs-boson parameters from the

comparison of theory and experiment. In this paper we further improve the cross-section

prediction and present the first calculation of the complete O(α) electroweak corrections

to associated bottom-Higgs production through bb̄ → φ0 in the MSSM.

The complete one-loop QCD and electroweak corrections for the decay of MSSM Higgs

bosons to bottom quarks have been presented in ref. [12] more than a decade ago. While the

predictions for Higgs-boson decays have been improved and refined in recent years, super-

symmetric QCD and electroweak corrections to the production cross section have so far only

been investigated at the level of universal corrections for large tan β (see e.g. refs. [3, 13]).

In section 2.1 we shall set the notation for the supersymmetric model. The calculation

of the NLO QCD and electroweak corrections is described in some detail in sections 2.2, 2.3,

and 2.4. Numerical results for MSSM Higgs-boson production at the LHC are presented

in section 3. We conclude in section 4. The appendices provide details on the scenarios of

the supersymmetric model under consideration and present further numerical results.
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2. Radiative corrections

2.1 Tree-level Yukawa couplings and cross section

In the Standard Model, Higgs production from bottom-quark fusion is governed by the

interaction term

Lb̄bH = −λSM
b b̄ b H , (2.1)

where λb is the bottom-quark Yukawa coupling and H denotes the field of the physical

Higgs boson. The corresponding mass term for the bottom quark is generated by the

Higgs vacuum expectation value v, leading to the tree-level relation

λSM
b =

mb

v
=

emb

2sWMW
, (2.2)

where e is the electromagnetic coupling constant, sW the sine of the weak mixing angle,

and MW the W-boson mass.

For the MSSM we will follow the conventions of ref. [14], where the two Higgs doublets

are denoted as

Hd =

(

h+
d

1√
2
(vd + h0

d + iχ0
d)

)

, Hu =

(

1√
2
(vu + h0

u − iχ0
u)

−h−
u

)

. (2.3)

The bottom quarks couple to Hd, giving mass to the down-type quarks via the vacuum

expectation value vd. Masses for up-type quarks are generated by a second Higgs doublet

Hu with vacuum expectation value vu. Considering the MSSM without CP-violating phases,

the CP-even neutral Higgs-boson fields h0 and H0 are linear combinations of h0
d and h0

u.

One conventionally defines the Higgs mixing angle α by writing
(

h0

H0

)

=

(

cα −sα

sα cα

)(

h0
u

h0
d

)

. (2.4)

Here and in the following, we will frequently use the notation sα ≡ sinα, cα ≡ cos α and

generalizations thereof. The vacuum expectation values are parameterized according to

vu = v sin β, vd = v cos β, i.e.

tβ ≡ tan β ≡ vu

vd
and v2 ≡ v2

u + v2
d . (2.5)

Taking the pseudoscalar Higgs mass MA0 and tβ as input parameters of the MSSM Higgs

sector, one finds the tree-level relation

t2α =
M2

A0 + M2
Z

M2
A0 − M2

Z

t2β (2.6)

with s2α < 0. The fields of the physical neutral pseudoscalar Higgs boson A0 and the

neutral would-be Goldstone boson G0 are given by
(

A0

G0

)

=

(

cβ −sβ

sβ cβ

)(

χ0
u

χ0
d

)

. (2.7)
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Consequently, the bb̄h0, bb̄H0, and bb̄A0 couplings read

λh0

b = −sα mb
vd

= −λSM
b

sα
cβ

,

λH0

b = cα mb
vd

= λSM
b

cα
cβ

,

λA0

b =
−sβ mb

vd
= −λSM

b tβ .

(2.8)

Hence, the Yukawa couplings are enhanced for large values of tβ. Note that for large masses

of the pseudoscalar Higgs boson, h0 is known to be SM like and sα → −cβ.

The leading-order partonic cross sections are given by

σ̂0
φ0 =

π

6

(λSM
b )2

M2
φ0

δ(1 − τ)











s2
α/c2

β

c2
α/c2

β

t2β

for

h0

H0

A0

production, (2.9)

where φ0 = (h0,H0,A0), τ = M2
φ0/ŝ,

√
ŝ is the partonic CM energy, and the incoming

bottom quarks are treated as massless particles in accordance with QCD factorization.

2.2 SUSY-QCD corrections

The QCD corrections to the process bb̄ → h0,H0,A0 are known to NNLO [10, 11], with a

small residual QCD factorization and renormalization scale uncertainty of less than ∼ 10%.

If one chooses the renormalization and factorization scales as µR = MH and µF = MH/4, re-

spectively, the impact of the genuine NNLO QCD corrections is typically less than 5% [11].

We have reproduced the NLO QCD result and extend previous analyses by including the

O(αs) SUSY-QCD corrections from virtual squark and gluino exchange.

The MS scheme has been adopted for the renormalization of the bottom-quark mass

mb and for the factorization of initial-state collinear singularities. The renormalization of

the bottom-Higgs Yukawa coupling is fixed in terms of the bottom-mass renormalization. In

order to sum large logarithmic corrections ∝ ln(mb/µR) we evaluate the Yukawa coupling

with the running b-quark mass mb(µR) [15].

The O(αs) SUSY-QCD corrections comprise self-energy and vertex diagrams induced

by virtual sbottom and gluino exchange, as shown in figure 1.

It is well known [16 – 19] that the SUSY-QCD corrections are enhanced for large tβ.

This important effect can be qualitatively understood as follows. Unlike down-type quarks,

which only couple to the down-type Higgs field at tree level, the down-type squarks also

couple to the up-type Higgs field via terms in the superpotential. The corresponding

coupling strength is proportional to the enhanced Yukawa coupling mb/vd times the Higgs

mixing parameter µ. Hence, the vacuum expectation value vu of Hu leads to a mixing term

in the sbottom mass matrix proportional to µ tβ, which dominates the sbottom mixing

angle Θb̃,

sin(2Θb̃) =
2mb (Ab − µ tβ)

m2
b̃1

− m2
b̃2

, (2.10)

where Ab denotes the soft-supersymmetry-breaking trilinear scalar coupling and b̃1,2 are

the sbottom mass eigenstates. The factor sin(2Θb̃) directly enters the (scalar part of the) b-

quark self-energy, which in turn enters the Yukawa coupling renormalization via the b-mass
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(a)

b

b

g̃

b̃i

(b)

b

b

φ0

g̃

b̃i

b̃j

Figure 1: Self-energy (a) and vertex (b) corrections from gluino exchange. Sbottom mass eigen-

states are denoted as b̃i with i = 1, 2.

counterterm δmb. The corresponding mass shift is usually denoted by −mb∆b with

∆b =
CF

2

αs

π
mg̃ µ tβ I(mb̃1

,mb̃2
,mg̃) , (2.11)

CF = 4/3, and the auxiliary function

I(a, b, c) =
−1

(a2 − b2)(b2 − c2)(c2 − a2)

(

a2b2 ln
a2

b2
+ b2c2 ln

b2

c2
+ c2a2 ln

c2

a2

)

. (2.12)

Here, mg̃ is the gluino mass. As shown in ref. [20] by power counting in αs tβ, the contri-

bution of ∆b can be summed by the replacement

mb → mb

1 + ∆b
(2.13)

in the bottom Yukawa coupling. As explained above, the loop-induced coupling of the up-

type Higgs to bottom quarks also involves a factor αs tβ. The full contribution to the φ0bb̄

vertex receives an additional factor {cα, sα, cβ} from the Hu part in φ0 = {h0,H0,A0}.
Power counting in αs tβ shows [20] that the tβ-enhanced vertex corrections of the form

(αs tβ)n are one-loop exact, i.e. they do not appear at higher orders (n ≥ 2). Collecting all

tβ-enhanced corrections to the bottom Yukawa couplings leads to the effective couplings

λφ0

b [20, 21], where

λh0

b

λSM
b

= −sα

cβ

1 − ∆b/(tβtα)

1 + ∆b
,

λH0

b

λSM
b

=
cα

cβ

1 + ∆b tα/tβ
1 + ∆b

, (2.14)

λA0

b

λSM
b

= −tβ
1 − ∆b/t

2
β

1 + ∆b
.

Note that λh0

b is still SM like for large MA0 , independent of the large-tβ summation owing

to tβtα → −1 in this limit. The summation formalism can be extended [21] to include

– 5 –
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corrections proportional to the trilinear coupling Ab in (2.10). However, these corrections

turn out to be small and summation effects may thus safely be neglected for the MSSM

scenarios under consideration in this work.

To combine the features of the above effective treatment with the complete one-loop

SUSY-QCD calculation, we modify the renormalization scheme to absorb the above correc-

tions into a redefinition of the bottom mass in the Yukawa coupling. Hence, an additional

counterterm

δ̄mh0

b

mb
= ∆b

(

1 +
1

tαtβ

)

,
δ̄mH0

b

mb
= ∆b

(

1 − tα
tβ

)

,
δ̄mA0

b

mb
= ∆b

(

1 +
1

t2β

)

(2.15)

is added for h0, H0, and A0 production, respectively, to remove the tβ-enhanced contri-

butions from the explicit one-loop result in order to avoid double-counting. We use the

convention of ref. [12] where mb,0 = mb + δmb.

As we shall demonstrate in the numerical analysis presented in section 3, the SUSY-

QCD radiative corrections are indeed sizeable at large tβ. After summation of the tβ-

enhanced terms, however, the remaining one-loop SUSY-QCD corrections are negligibly

small, at the level of per mille and below.

2.3 Electroweak SM corrections and calculational details

The electroweak corrections naturally decompose into a purely photonic, QED-like part

δQED and the remaining weak contributions δweak: δew = δQED + δweak. Each of these con-

tributions forms a gauge-invariant subset of the O(α)-corrected cross section. The photonic

corrections due to virtual photon exchange and real photon emission can be obtained from

the QCD results by appropriately adjusting colour factors and electric charges. For the

QED renormalization of the bottom mass we use the on-shell scheme, because electroweak

running effects beyond the one-loop level are negligible.

The divergences due to collinear photon emission from the massless b-quarks are re-

moved by mass factorization as in QCD, i.e. by a redefinition of the bottom parton densities

according to

fb(x) → fb(x, µF ) +

∫ 1

x

dz

z
fb

(x

z
, µF

)

Q2
b

α

2π

{

[Pqq(z)]+

(

∆ + ln
µ2

µ2
F

)

− Cqq(z)

}

+

∫ 1

x

dz

z
fγ

(x

z
, µF

)

3Q2
b

α

2π

{

Pqγ(z)

(

∆ + ln
µ2

µ2
F

)

− Cqγ(z)

}

,

(2.16)

where ∆ = 1/ε − γE + ln(4π) is the standard divergence in D = 4 − 2ε dimensions, γE is

Euler’s constant, Qb = −1/3 is the electric b charge, and µF denotes the QED factorization

scale which is identified with the QCD factorization scale but is chosen independently of

the scale µ introduced by dimensional regularization. The factor 3 in the second line stems

from the splitting of the photon into bb-pairs of different colour. Furthermore,

Pqq(z) =
1 + z2

1 − z
and Pqγ(z) = z2 + (1 − z)2 (2.17)

– 6 –
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are the quark and photon splitting functions, respectively, and Cqq, Cqγ the coefficient

functions specifying the factorization scheme. Following standard QCD terminology one

distinguishes MS and DIS schemes defined by

CMS
qq (z) = CMS

qγ (z) = 0,

CDIS
qq (z) =

[

Pqq(z)

(

ln
1 − z

z
− 3

4

)

+
9 + 5z

4

]

+

, (2.18)

CDIS
qγ (z) = Pqγ(z) ln

1 − z

z
− 8z2 + 8z − 1 .

The equivalent factorization procedure using fermion masses as regulators instead of di-

mensional regularization can, e.g., be found in ref. [22]. In our numerical analysis we

employ the MRST2004qed parton distribution functions [23], which include O(α) correc-

tions defined in the DIS factorization scheme [22]. The MRST2004qed parametrization

also provides a photon density necessary to compute the hadronic cross section for the

O(α) photon-induced processes γ b → φ0 b and γ b → φ0 b.

We have calculated the NLO QCD and QED corrections using dimensional regulariza-

tion and alternatively using a mass regularization for the collinear divergences, where we

employed the methods of refs. [22, 24] for the mass regulators.

Similar to the QCD case, the QED corrections are universal for the production of SM

and MSSM Higgs bosons. Their size is quite small since the potentially large correction due

to collinear photon emission is absorbed into the parton distribution function fb(x, µF ).

We shall discuss numerical results in section 3.

Let us now turn to the remaining electroweak corrections δweak. As we shall discuss in

more detail in section 3.4, the small but finite bottom mass can induce sizeable corrections

in the electroweak sector of the MSSM due to additional (tβ-enhanced) bottom Yukawa

couplings in loops. Hence, while we neglect the b-mass at tree level and for the QCD and

QED corrections as required by QCD factorization, we keep the finite bottom mass mb in

the calculation of the relative one-loop weak correction δweak. Thus, our result for δweak

also contains kinematical mb effects that formally lie beyond the accuracy of the 5FNS-

calculation. However, these effects are small. Different choices for the numerical value of

the bottom mass used within the calculation of the relative one-loop correction lead to

results which formally differ by NNLO effects. Because the mb-dependence is dominated

by the strength of the Yukawa coupling, we have chosen the running bottom mass (as

defined after summation of tβ-enhanced terms) as input.

Both in the SM and in the MSSM, the one-loop electroweak corrections have been

calculated independently using two different approaches: In one approach, the Feynman-

diagrammatic expressions for all self-energies and one-loop vertex diagrams have been

generated using the program package FeynArts [25]. The calculations have then been

performed with the help of the program package FormCalc [26], and the loop integrals

have been evaluated numerically with LoopTools [26]. In a second approach, also starting

from the amplitudes generated by FeynArts, all calculations, including the evaluation of

the loop integrals, have been performed with a completely independent set of in-house

routines. The two calculations are in mutual agreement. We note that the regularization

– 7 –
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of the complete electroweak MSSM corrections has been performed using both constrained

differential renormalization as implemented in FormCalc as well as dimensional reduction.

Both regularization procedures are known to be equivalent at the one-loop level [26], and the

results of the two calculations are in agreement. We refrain from displaying the complete

analytic results and restrict ourselves to a discussion of the renormalization conditions and

the input-parameter schemes.

Using standard notation, the vertex counterterm at one-loop order is given by

δbbH
CT = δZe +

δZH

2
+

δmb

mb
+

δZb
L + δZb

R

2
− δsW

sW

− δM2
W

2M2
W

. (2.19)

Employing the on-shell renormalization scheme, this results in

δbbH
CT = δZe +

δZH

2
+ Σb

S(m2
b) − 2m2

b

(

Σ′b
S (m2

b) + Σ′b
V (m2

b)
)

+
1

2

(

c2
W
− s2

W

s2
W

ΣW(M2
W)

M2
W

− c2
W

s2
W

ΣZ(M2
Z)

M2
Z

)

,

(2.20)

where Σb
S,V denotes the scalar and vector part of the b-quark self-energy, respectively,

and Σ′ refers to the derivative of the self-energy with respect to the external momentum

squared. The relation s2
W

= 1−M2
W/M2

Z is used to determine δsW. Here and in section 2.4

we only consider the real part of the self-energies and follow the conventions of ref. [27].

For compactness, the transverse parts of gauge-boson self-energies are simply written as

ΣW, ΣZ, etc.

The different input-parameter schemes are specified by the choice of δZe. In the α(0)-

scheme, using the low-energy fine-structure constant α(0) as input, we have [28]1

δZe|α(0) =
1

2
Σ′

γ(0) +
sW

cW

ΣγZ(M2
Z)

M2
Z

. (2.21)

In the α(0)-scheme, δZe contains logarithms of the light fermion masses inducing large

corrections of the form α ln(m2
f/ŝ), which are related to the running of the electromagnetic

coupling α(Q) from Q = 0 to a high energy scale. In order to correctly reproduce the

non-perturbative hadronic part in this running, which enters via Πγ(M2
Z) − Πγ(0) with

Πγ(k2) = Σγ(k2)/k2 denoting the photonic vacuum polarization, we adjust the quark

masses to the asymptotic tail of Πγ(k2). In the α(MZ)-scheme, using α(MZ) as defined

in ref. [29] as input, this adjustment is implicitly incorporated, and the counterterm reads

δZe|α(MZ) = δZe|α(0) −
1

2
∆α(M2

Z) , (2.22)

where

∆α(Q2) = Πf 6=t
γ (0) − Re Πf 6=t

γ (Q2) , (2.23)

1We follow the convention of Haber and Kane [14] to define the covariant derivative for SU(2)L, i.e. the

sign in front of ΣγZ in (2.21) differs from ref. [28].

– 8 –
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and Πf 6=t
γ denotes the photonic vacuum polarization induced by all fermions other than

the top quark. Hence, in the α(MZ)-scheme, the final result does not depend on the

above logarithms of the light fermion masses. In the Gµ-scheme, α is determined from the

muon-decay constant Gµ according to

αGµ =

√
2GµM2

Ws2
W

π
= α(0)(1 + ∆r). (2.24)

The radiative QED corrections for muon decay in the framework of the effective 4-fermion

interaction are already encoded in the numerical value for Gµ. The additional corrections

from a full one-loop SM calculation are taken into account through ∆r [30] according to

δZe|Gµ
= δZe|α(0) −

1

2
∆r . (2.25)

Since ∆α(M2
Z) is explicitly contained in ∆r, the large fermion-mass logarithms are also

absent in the Gµ-scheme. Moreover, since the lowest-order cross section is proportional to

α/s2
W for the production of all the three Higgs bosons, in Gµ-parameterization it absorbs

the large universal correction ∆ρ from the ρ-parameter, which is ∝ Gµm2
t and represents

a part of ∆r. Dividing eq. (2.24) by s2
W, one easily sees that αGµ/s2

W absorbs ∆r and

thus also ∆ρ. We will use the Gµ-scheme unless stated otherwise. We have also performed

two independent calculations for ∆r in the MSSM, using either constrained differential

renormalization or dimensional reduction, and find agreement with the result of ref. [31].

In the SM, the Higgs mass can be defined by an on-shell renormalization condition.

The wave-function renormalization of the Higgs-boson field is conveniently chosen in the

on-shell scheme,

δZH = −Σ′
H(M2

H) , (2.26)

where ΣH is the Higgs-boson self-energy.

2.4 Electroweak MSSM corrections

The photonic corrections in the MSSM do not change with respect to the SM case. For

the conventions and for the renormalization of the MSSM Higgs sector, which is more

involved, we essentially follow ref. [27].2 In particular, a proper renormalization scheme

has to be specified to determine the vertex counterterm δbbH
CT , cf. (2.19), including the

renormalization of tβ. The wave-function renormalization for the Higgs doublet fields is

usually defined by

Hi → Z
1/2
Hi

Hi = Hi

(

1 +
1

2
δZHi

)

(2.27)

with i = u,d. For the vacuum expectation values of the Higgs fields one defines

vi → Z
1/2
Hi

(vi − δvi) = vi

(

1 +
1

2
δZHi

− δvi

vi

)

, (2.28)

2For clarity, we specify our conventions for some field-theoretic quantities where the conventions

of ref. [27] might be unclear. Explicit tadpole vertex functions for Higgs fields are denoted as Γφ0

= iT φ0

,

i.e. T φ0

differs from ref. [27] by a global sign. The A0Z mixing self-energy is derived from the vertex function

ΓA
0
Z

µ (k,−k) = kµΣA0Z(k2), where k is the incoming A0 momentum.
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where the last equation is valid to one-loop order with ZHi
= 1 + δZHi

. The freedom of

wave-function renormalization can then be used to impose the condition

δvu

vu
=

δvd

vd
(2.29)

leading to
δtβ
tβ

=
1

2
(δZHu

− δZHd
) . (2.30)

Hence, for the MSSM Higgs sector the counterterm δZH in (2.19) reads

δZH =
1

2
δZHd

+ s2
β

δtβ
tβ

=
1

2

(

c2
β δZHd

+ s2
β δZHu

)

. (2.31)

Note, that δZH includes all parts of the vertex counterterm that are related to the Higgs

sector, i.e. δtβ as well as the wave-function renormalization counterterm δZHd
. The quan-

tity δZH should not be confused with the wave-function renormalization constants for the

physical Higgs fields. Since the counterterm δZH is universal for the production of h0, H0,

and A0 via down-type quarks, the whole vertex counterterm δbbH
CT (2.19) is also universal.

We consider two renormalization schemes for tβ:

i) Following Dabelstein [27] and Chankowski et al. [32], a vanishing on-shell A0Z-mixing

can be used as a renormalization condition, i.e.

Σ̂A0Z(M2
A0) = 0 , (2.32)

where

Σ̂A0Z(k2) = ΣA0Z(k2) − MZs2β
δtβ
tβ

(2.33)

denotes the real part of a renormalized self-energy defined according to the con-

ventions in ref. [27]. To fix the second wave-function renormalization constant, one

demands the on-shell condition

Σ̂′
A0(M

2
A0) = 0 (2.34)

for the residue of the A0-boson propagator. From the last two equations, one finds

δZHu
= −Σ′

A0(M
2
A0) +

tβ
MZ

ΣA0Z(M2
A0) ,

δZHd
= −Σ′

A0(M
2
A0) −

1

tβMZ
ΣA0Z(M2

A0) ,
(2.35)

which defines the DCPR scheme [27, 32] for the tβ renormalization [see (2.30)].

ii) Alternatively, in the DR scheme, the counterterm for tβ is proportional to ∆ =

1/ε − γE + ln(4π). Hence, one can convert (2.35) to the DR scheme by setting the

remaining finite pieces of ΣA0Z to zero. Accordingly, tDR
β is a renormalization-scale-

dependent quantity, i.e. the input for a given model has to be fixed at a given scale
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µR. To one-loop order, the conversion of the tβ input parameters from the DR scheme

to tDCPR
β in the DCPR scheme is given by

[

tβ +
1

2MZc2
β

Σfin
A0Z(M2

A0)

]DCPR

= tDR
β , (2.36)

where Σfin denotes the finite pieces of the self-energy in the DR scheme. In this work,

we always use the renormalization condition (2.34), also if we use DR to renormalize

tβ.

In analogy, there are the DCPR and the DR schemes for the renormalization of the mass

MA0 of the pseudoscalar Higgs boson. The DCPR scheme uses the on-shell renormalization

condition

Σ̂A0(M2
A0) = 0 , (2.37)

while the DR scheme is again defined by setting Σfin
A0(M

2
A0) to zero in the mass counterterm

for the pseudoscalar Higgs boson. In this work, we use the on-shell scheme for the renormal-

ization of A0. Supersymmetric models are usually defined in terms of DR parameters [33].

Hence, we have to calculate the on-shell A0 mass from the corresponding scale-dependent

DR parameter. For a given parameter set, we determine Mos
A0 from the zero of the inverse

A0 propagator3

(Mos
A0)

2 − (MDR
A0 )2 + Σfin

A0((M
os
A0)

2) = 0 (2.38)

which corresponds to a given DR mass for A0. Here, Σfin
A0(k

2) is calculated from an MSSM

parameter set using Mos
A0 as input. We start with Mos

A0 = MDR
A0 for the self-energy cal-

culation and iterate until self-consistency is reached. If tβ is renormalized in the DCPR

scheme, (2.36) is used to also find tDCPR
β self-consistently along with Mos

A0 . The one-loop

shift of the numerical value of MA0 is particularly important because it enters already at

tree level through the determination of the mixing angle [see (2.6)].

For completeness, we also state the remaining renormalization conditions for the tad-

poles,

Th0 + δth0 = 0 and TH0 + δtH0 = 0 , (2.39)

which ensure that vu and vd correctly minimize the one-loop potential. As in the SM, the

masses for the W and Z boson are renormalized by on-shell conditions.

Including the corrections to the Higgs external legs, the partonic cross section to one-

loop order is given by

σ
(1)
h0 = σtree

h0 · Zh0

[

(

1 − Zh0H0

cα

sα

)2

+ 2 Re

(

1 − Zh0H0

cα

sα

)

∆h0

]

,

σ
(1)
H0 = σtree

H0 · ZH0

[

(

1 − ZH0h0

sα

cα

)2

+ 2 Re

(

1 − ZH0h0

sα

cα

)

∆H0

]

,

σ
(1)
A0 = σtree

A0 · ZA0 (1 + 2 Re∆A0) ,

(2.40)

3In contrast to ref. [19], but in line with ref. [33], we assume that all tadpole contributions to the mass

of A0 are absorbed in the definition of the DR mass MDR

A0 .
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where ∆φ0 denotes the relative one-loop vertex corrections including the corresponding

counterterms. Depending on the renormalization scheme, ∆A0 also includes the contribu-

tions from ZA0-mixing and G0A0-mixing. The Z factors are given by [12]

Zh0 =
1

1 + Σ̂′
h0(k2) −

(

Σ̂2

H0h0
(k2)

k2−m2

H0
+Σ̂

H0(k2)

)′

∣

∣

∣

∣

∣

∣

∣

∣

∣

k2=M2

h0

,

ZH0 =
1

1 + Σ̂′
H0(k2) −

(

Σ̂2

H0h0
(k2)

k2−m2

h0
+Σ̂

h0(k2)

)′

∣

∣

∣

∣

∣

∣

∣

∣

∣

k2=M2

H0

,

ZA0 =
1

1 + Σ̂′
A0(k2)

∣

∣

∣

∣

∣

k2=M2

A0

= 1 .

(2.41)

The mixing of the CP-even Higgs bosons is determined by

Zh0H0 = − Σ̂H0h0(M2
h0)

M2
h0 − m2

H0 + Σ̂H0(M2
h0)

,

ZH0h0 = − Σ̂H0h0(M2
H0)

M2
H0 − m2

h0 + Σ̂h0(M2
H0)

,

(2.42)

where mφ0 denotes the tree-level masses and Mφ0 the one-loop masses (φ0 = h0, H0), i.e.

the zeros of the inverse one-loop propagator matrix determinant

(

k2 − m2
h0 + Σ̂h0(k2)

)(

k2 − m2
H0 + Σ̂H0(k2)

)

− Σ̂2
H0h0(k

2) = 0 . (2.43)

The renormalized Higgs self-energies in turn are given by

Σ̂h0(k2) = Σh0(k2) + k2
(

δZHu
c2
α + δZHd

s2
α

)

− δm2
h0 ,

Σ̂H0(k2) = ΣH0(k2) + k2
(

δZHu
s2
α + δZHd

c2
α

)

− δm2
H0 ,

Σ̂H0h0(k2) = ΣH0h0(k2) + k2 sαcα (δZHu
− δZHd

) − δm2
H0h0 ,

(2.44)
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where the Higgs mass counterterms read4

δm2
h0 = c2

β−α ΣA0(M2
A0) + s2

β+αΣZ(M2
Z) −

e s2
β−α cβ−α

2MZsWcW

TH0 +
e sβ−α (1 + c2

β−α)

2MZsWcW

Th0

−
(

M2
A0 c2

β−α + M2
Z s2

β+α

)

Σ′
A0(M

2
A0) + MZ

c2α − c2β

s2β
ΣA0Z(M2

A0) , (2.45)

δm2
H0 = s2

β−α ΣA0(M2
A0) + c2

β+αΣZ(M2
Z) +

e cβ−α (1 + s2
β−α)

2MZsWcW

TH0 −
e c2

β−α sβ−α

2MZsWcW

Th0

−
(

M2
A0 s2

β−α + M2
Z c2

β+α

)

Σ′
A0(M

2
A0) − MZ

c2α + c2β

s2β
ΣA0Z(M2

A0) , (2.46)

δm2
H0h0 = −

s2(β−α)

2
ΣA0(M2

A0) −
s2(β+α)

2
ΣZ(M2

Z) +
e s3

β−α

2MZsWcW

TH0 +
e c3

β−α

2MZsWcW

Th0

+
1

2

(

M2
A0 s2(β−α) + M2

Z s2(β+α)

)

Σ′
A0(M

2
A0) + MZ

s2α

s2β
ΣA0Z(M2

A0) . (2.47)

If tβ is renormalized in the DR scheme the finite parts of ΣA0Z have to be set to zero in the

above formulas. Note also that MA0 is the on-shell A0-mass in these formulas, because we

translate the MA0 input always to the on-shell scheme before the actual loop calculation.

As mentioned before, in all the above equations we only consider the real parts of the

self-energies. Neglecting the imaginary part does not spoil the one-loop accuracy of our

calculation, since the imaginary parts formally only enter at higher orders.5

In complete analogy to SUSY-QCD in section 2.2, there are tβ-enhanced corrections in

the electroweak sector which can be numerically sizeable and which should be summed [20]

to all orders. Higgsino-stop loops lead to a contribution to ∆b of the form

∆H̃t̃
b =

αm2
t

8πs2
W

s2
β M2

W

At µ tβ I(mt̃1
,mt̃2

, µ) , (2.48)

where m2
t̃i

denote the masses of the stop mass eigenstates, and At is the usual trilinear soft

breaking parameter. From wino-higgsino-stop and wino-higgsino-sbottom loops we find

∆W̃
b = − α

8πs2
W

M2 µ tβ

[

2 cos2 Θt̃ I(mt̃1
, µ,M2) + 2 sin2 Θt̃ I(mt̃2

, µ,M2)

+ cos2 Θb̃ I(mb̃1
, µ,M2) + sin2 Θb̃ I(mb̃2

, µ,M2)
]

,
(2.49)

where M2 is the soft SUSY-breaking mass parameter for the wino, Θt̃ denotes the stop

mixing angle, and the auxiliary function I(a, b, c) is given in (2.12). Finally, bino loops

4Up to some (known) sign errors in δm2

H0h0 , the Higgs mass counterterms can be also found in ref. [27].
5While an inclusion of such imaginary parts in mass determinations of unstable particles is straight-

forward, a consistent inclusion of such width effects in the description of particle reactions requires an

inspection of full resonance processes including production and decay of the unstable particles. This is

beyond the aimed level of precision of this work.
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contribute

∆B̃
b = − α

72πc2
W

M1 µ tβ

[

3(1 + sin2 Θb̃) I(mb̃1
, µ,M1) + 3(1 + cos2 Θb̃) I(mb̃2

, µ,M1)

+ 2I(mb̃1
,mb̃2

,M1)
]

,

(2.50)

where M1 is the soft SUSY-breaking mass parameter for the bino. The full result for ∆b

is then given by

∆b = ∆g̃
b + ∆weak

b = ∆g̃
b + ∆H̃t̃

b + ∆W̃
b + ∆B̃

b , (2.51)

where ∆g̃
b denotes the gluino contribution of (2.11). We have recalculated these results and

find agreement with ref. [20]. In contrast to ref. [20] we also include the bino terms in the

summation. However, they are indeed numerically small.

To further improve the accuracy of the calculation, we also include two-loop contribu-

tions to the self-energies as provided by the program package FeynHiggs [35] (version 2.3.2).

As for the one-loop part of the self-energies we find perfect agreement between our calcu-

lation and the results obtained with FeynHiggs.6

In addition to using a properly defined b-mass, one often absorbs parts of the radiative

correction related to the Higgs external leg using an effective mixing angle αeff = α + δα

at tree level. Here, we follow FeynHiggs and define δα to be the angle which diagonalizes

the loop-corrected Higgs mass matrix, i.e.

(

m2
h0 − Σ̂h0(m2

h0) −Σ̂h0H0((m2
h0 + m2

H0)/2)

−Σ̂h0H0((m2
h0 + m2

H0)/2) m2
H0 − Σ̂H0(m2

H0)

)

δα−→
(

M2
h0 0

0 M2
H0

)

, (2.52)

where the renormalized Higgs self-energies are evaluated at the given momenta. We define

an improved Born approximation σIBA which includes the leading higher-order corrections

through the running b-mass, the summation of tβ-enhanced terms and the effective mixing

angle,

σ̂IBA =

√
2πGµmb(µR)2

6M2
φ0

δ(1 − τ)











































s2
αeff

c2
β

(

1 − ∆b/(tβtαeff
)

1 + ∆b

)2

,

c2
αeff

c2
β

(

1 + ∆b tαeff
/tβ

1 + ∆b

)2

,

t2β

(

1 − ∆b/t
2
β

1 + ∆b

)2

for

h0

H0

A0

production,

(2.53)

where σ̂IBA denotes the partonic cross section, φ0 = (h0,H0,A0), τ = M2
φ0/ŝ, and

√
ŝ is

the partonic CMS energy. Here mb(µR) is the running MS bottom mass in QCD, ∆b

6Since FeynHiggs does not directly support our renormalization scheme ii) (the Higgs field renormal-

ization is different), we had to implement this scheme in FeynHiggs ourselves. For the leading two-loop

corrections included in FeynHiggs, neither tanβ nor the Higgs fields are renormalized at the two-loop level.

Thus, it is consistent to add the FeynHiggs two-loop correction to the one-loop result in our renormalization

schemes.
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comprises the tβ-enhanced terms of the supersymmetric QCD and weak corrections as

specified in (2.51), and αeff is the effective mixing angle defined in (2.52). We will compare

our full result to this approximation in section 3.

3. Phenomenological analysis

3.1 SM input parameters

For our numerical predictions, we essentially use the SM input parameters [36]

α = 1/137.03599911, α(MZ) = 1/128.952, Gµ = 1.16637 × 10−5 GeV−2,

MW = 80.403GeV, MZ = 91.1876GeV,

me = 0.51099892MeV, mµ = 105.658369MeV, mτ = 1.77699GeV,

mu = 66MeV, mc = 1.2GeV, mt = 174.2GeV,

md 66MeV, ms = 0.15GeV, mb(mb) = 4.2GeV.

(3.1)

Here, mb(mb) is the QCD–MS mass for the bottom quark while the top mass mt is

understood as an on-shell mass. For the QED renormalization of the bottom mass we use

the on-shell scheme, as mentioned above, with an on-shell mass mb = 4.53 GeV calculated

from mb(mb) to one-loop order in QCD. The masses of the light quarks are adjusted such

as to reproduce the hadronic contribution to the photonic vacuum polarization leading to

α(MZ) of ref. [37]. They are relevant only for the evaluation of the charge renormalization

constant δZe in the α(0)-scheme. The CKM matrix has been set to the unit matrix.

For the calculation of the hadronic cross sections we have adopted the MRST2004qed

parton distribution functions [23] at NLO QCD and NLO QED, with the corresponding

αs(MZ) = 0.11899. The top quark, squarks, and gluinos are decoupled from the running

of the strong coupling αs(µR). We choose the renormalization and factorization scales as

µR = MH and µF = MH/4, respectively. As mentioned above, with this specific choice the

QCD NNLO radiative corrections are at the percent level [11].

3.2 The SM cross section

The NLO cross section predictions for associated bb̄H production at the LHC, including

QCD, QED and weak corrections, are shown in table 1 for the three different input-para-

meter schemes introduced in section 2.3.

The QED corrections are very small after potentially large contributions from collinear

photon emission have been removed by mass factorization as described in section 2.3. As

expected, the inclusion of the electroweak corrections reduces the scheme dependence. In

the following we will adopt the Gµ-scheme, where the value of the electromagnetic coupling

is derived from muon decay according to αGµ and where the influence of the light-quark

masses is negligible. Note that the relative O(α) QED corrections are evaluated with

α(0), irrespective of the chosen input-parameter scheme, because the relevant scale for the

bremsstrahlung process is set by the vanishing virtuality of the emitted real photon.
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σ [pb] LO QCD QCD+QED full SM

α(0)-scheme 0.02309 0.02868 0.02863 0.02901 (25.6%)

Gµ-scheme 0.02390 0.02968 0.02963 0.02924 (22.3%)

α(MZ)-scheme 0.02453 0.03047 0.03042 0.02932 (19.5%)

Table 1: The LO and NLO SM cross section pp → (bb̄)H + X for a Higgs boson with

MH = 300GeV at the LHC (
√

s = 14TeV). Results are presented for the three different input-

parameter schemes defined in section 2.3. The MRST2004qed parton distribution function and

NNLO-QCD running for the b-mass have been adopted for the NLO as well as the LO cross sec-

tions, and the renormalization and factorization scales have been set to µR = MH and µF = MH/4,

respectively. “QCD” denotes the NLO QCD corrections only, “QCD+QED” also includes photon

exchange and emission as well as the initial state containing a photon. The “full SM” predic-

tion includes all O(αs) and O(α) corrections; the corresponding relative correction is indicated in

parentheses.

3.3 MSSM input

For our numerical analysis, we will focus on the benchmark scenario SPS 4 [38] which is cha-

racterized by a large value of tβ = 50 and a correspondingly large associated production

cross section bb̄ → H0,A0 at the LHC. Results for the alternative benchmark scenario

SPS 1b with tβ = 30 will be presented in appendix B. Both the SPS 4 and SPS 1b input

parameters are specified in appendix A. Note that searches at the Fermilab Tevatron are

not sensitive to scenarios with H0,A0-masses as large as the masses in SPS 4 or SPS 1b.

From the SPS DR input parameters we calculate Mos
A0 and, if we work in the DCPR

scheme, also tDCPR
β , as specified in section 2.4. The corresponding renormalization scale

µR(DR) used in the electroweak part of the calculation is specified by the SPS scenario

(see appendix A). Note, that it differs in general from the renormalization scale in the

QCD part of the calculation which is set to the mass of the produced Higgs boson. The

MSSM tree-level relations are used to determine the sfermion and gaugino masses and

mixing angles that enter the one-loop corrections. The Higgs masses and the Higgs sector

mixing angle α [see (2.6)] which enter the calculation of the loop diagrams are also obtained

according to the tree-level relations.

While the bottom mass that enters the Yukawa coupling at LO is fixed by the require-

ment to account for dominant NLO corrections, different definitions for the bottom mass in

the relative NLO correction change the result only beyond NLO. As argued in section 2.3,

we shall use the running bottom mass as defined after summation of tβ-enhanced terms as

input7. The running mass is needed as an input for the determination of the MSSM pa-

rameters, but it also depends on these parameters through the QCD renormalization scale

µR = Mφ0 and through the tβ-enhanced corrections. The b-mass is thus calculated using

an iterative procedure, starting from some initial guess for its value, and using the resulting

b-mass as input for a refined determination of the MSSM parameters, until self-consistency

7While the electroweak corrections are calculated using dimensional reduction, we do not convert the

running MS bottom mass to the corresponding DR mass to define the input value for the relative one-loop

correction. The difference is of higher order.
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h0 H0 A0

σIBA[pb] 0.65 15.39 15.40

δQCD[%] 36.25 21.48 21.48

δQED[%] -0.13 -0.23 -0.23

δMSSM−QCD[%] -0.03 0.08 0.07

δMSSM−weak[%] -1.22 -1.57 -1.60

Table 2: LO cross section in the improved Born approximation σIBA as defined in (2.53), as well

as corrections δ relative to σIBA, for pp → (bb̄) h0/H0/A0+X at the LHC (
√

s = 14TeV) in the

SPS 4 scenario. The MRST2004qed PDFs and NNLO-QCD running for mb have been adopted, the

renormalization and factorization scales have been set to µR = Mφ0 and µF = Mφ0/4, respectively,

and tβ has been renormalized in the DR scheme. “QCD” denotes the NLO QCD corrections only,

“QED” denotes all photonic corrections only, and “MSSM-QCD” and “MSSM-weak” comprise only

the QCD and weak effects in the MSSM, respectively, that remain after absorbing the large-tβ effects

in the LO cross section.

is reached. Note, however, that this running mass depends on the process under consid-

eration through the choice of scale and through the tβ-enhanced corrections. In order to

avoid the proliferation of input masses, we adopt the running b-mass associated with H0

production in the relative corrections to all processes, e.g. mb = 2.24 GeV for SPS 4 in the

DR scheme.

We use the two-loop-improved Higgs masses for the kinematics, e.g. in the tree-

level cross section or when they appear as external momenta in the on-shell vertex-

correction. Using the two-loop self-energies from FeynHiggs [35], these two-loop im-

proved on-shell Higgs-boson masses in the SPS 4 scenario are given by Mh0 = 115.66 GeV,

MH0 = 397.72 GeV, and MA0 = 397.67 GeV for the renormalization scheme ii) introduced

in section 2.4, i.e. what we call DR scheme. (As described in section 2.3 we only consider

the real part of the self-energies when we determine the Higgs masses, in contrast to the

default setting in FeynHiggs. Including the imaginary parts has no visible effect on Mh0

and shifts MH0 by only approximately 200 MeV.)

3.4 The MSSM cross sections

Within the MSSM, let us first focus on the radiative corrections and total cross sections in

the SPS 4 benchmark scenario using the DR scheme for the renormalization of tβ.

In table 2 we present the relative radiative corrections δ defined with respect to the

improved Born approximation σIBA defined in eq. (2.53).

The full cross-section prediction including summations and the remaining non-

universal O(αs) and O(α) corrections is thus given by σ = σIBA × (1 + δQCD + δQED

+δMSSM−QCD + δMSSM−weak). Note that we have removed corrections from our full calcu-

lation that are taken into account through the use of αeff in σIBA to avoid double counting.

As can be seen from table 2, the bulk of the MSSM-QCD and -weak corrections can indeed

be absorbed into the above definition of σIBA. The remaining non-universal corrections

δMSSM = δMSSM−QCD + δMSSM−weak in the complete MSSM calculation turn out to be
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h0 H0 A0

mb[GeV] σ[pb] mb[GeV] σ[pb] mb[GeV] σ[pb]

QCD 2.80 0.97 2.55 24.12 2.55 24.13

+QED 2.80 0.97 2.55 24.07 2.55 24.09

+∆g̃
b 2.72 0.92 1.95 14.14 1.95 14.15

+∆weak
b 2.75 0.94 2.24 18.66 2.24 18.67

+ sin(αeff ) 2.75 0.88 2.24 18.66 2.24 18.67

full calculation 2.75 0.87 2.24 18.43 2.24 18.44

Table 3: The NLO MSSM cross section pp → (bb̄) h0/H0/A0+X at the LHC (
√

s = 14TeV) in

the SPS 4 scenario including the cumulative corrections due to the different classes of corrections

(PDFs, scale setting, and tβ renormalization as in table 2). We also quote the effective bottom mass

entering the respective effective Yukawa coupling, to quantify the impact of the summation. “QCD”

denotes the NLO QCD corrections only, “QED” denotes the addition of all photonic corrections, ∆g̃
b

and ∆weak
b refer to the effect of summing tβ enhanced terms in SUSY-QCD and the weak MSSM,

respectively, sin(αeff) denotes the additional improvement of the Born cross section by using the

effective mixing angle αeff . Finally, we give the result for the full calculation in the MSSM where

all O(αs) and O(α) corrections are included.

quite small, below approximately 2%. We note, however, that the size of the corrections

δMSSM depends quite sensitively on the numerical value of the input b-mass. We shall

discuss this point in more detail below.

In table 3, we show the cumulating effect of the various higher-order correc-

tions on the effective b-mass (as defined after summation of tβ-enhanced terms,

mb→mb(1 − ∆b/(tβtα))/(1 + ∆b) for h0 production, etc.) and the resulting cross sec-

tions.

As already observed within the SM, the QED corrections are generally very small

after mass factorization. The summation of the tβ-enhanced MSSM-QCD and MSSM-

weak corrections, encoded in ∆g̃
b and ∆weak

b , respectively, has a significant effect on the

cross sections for H0 and A0 production. The light Higgs boson h0, on the other hand, is

SM-like in the SPS 4 scenario and the summation of terms ∝ tβ has thus no sizeable impact

on the cross section. Employing a loop-improved effective mixing angle αeff is numerically

relevant only for h0 production because sα ∼ −1/tβ is small and even a small shift α → αeff

has a sizeable effect on sα. The cross sections in the last-but-one row of table 3 correspond

to the improved Born approximation dressed with QCD and QED corrections. The full

MSSM cross section including all summations and the remaining non-universal O(αs) and

O(α) corrections is displayed in the last row of the table. As discussed previously, the

non-universal supersymmetric corrections turn out to be small at a level of a few percent.

Note that the b-mass values in the last row of table 3 have been used to calculate the cross

sections tabulated in table 2. (While mb = 2.75 GeV and mb = 2.24 GeV have been used

to calculate σIBA for h0 and H0/A0 production, respectively, mb = 2.24 GeV has been used

as input for all relative corrections, as discussed before.)

In figure 2 we show the impact of the complete supersymmetric O(αs) and O(α)
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Figure 2: Full MSSM corrections δMSSM = δMSSM−QCD + δMSSM−weak defined relative to σIBA as

a function of the MA0 pole mass in the DR scheme for tβ. All other MSSM parameters are fixed to

their SPS 4 values.
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Figure 3: Full MSSM corrections δMSSM = δMSSM−QCD + δMSSM−weak as in figure 2. However,

here αeff (2.52) in σIBA is calculated from self-energies at p2 = 0.

corrections, δMSSM = δMSSM−QCD + δMSSM−weak, defined relative to the improved Born

approximation σIBA (2.53), for different values of the on-shell mass MA0 .

All other MSSM parameters are kept fixed to the SPS 4 values. The size of the non-

universal corrections does not exceed 3% for H0/A0 production except for special model

parameters, where the Higgs masses are close to the production threshold for pairs of

sparticles. The peaks in the corrections correspond to neutralino, chargino, or sfermion
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thresholds. Thresholds which are too narrow, however, are not displayed in figure 2. These

unphysical singularities can be removed by taking into account the finite widths of the

unstable sparticles (see e.g. ref. [39]). Note that the peaks for h0 production are induced by

the finite parts of the counterterms in (2.34). This proliferation of unphysical singularities

can be avoided by choosing the DR scheme for the A0 wave function renormalization, as

is default in FeynHiggs.

For small MA0 when the masses of the neutral Higgs bosons are almost degenerate,

the effects from the loop-induced Higgs mixing become extremely large. To go beyond the

effective mixing angle approximation in this region, one would have to include corrections

to the off-shell bbh0/bbH0 vertex for H0/h0 production, respectively. We will not address

this issue, which is part of a two-loop calculation, in this work. Therefore, we truncate

figure 2 at MA0 = 150 GeV.

For very large MA0 the relative corrections to h0 production increase to up to 10%.

However, in this parameter region, the size of δMSSM for h0 depends very sensitively on

the definition of the effective mixing angle αeff employed in σIBA. As defined in (2.52),

αeff inherits a distinct dependence on MA0 because some of the self-energies are evaluated

at momentum scales of the order of MH0 ∼ MA0 . This dependence is not present in the

complete result and, thus, has to be compensated by δMSSM. Evaluating the self-energies

that enter αeff (2.52) at p2 = 0, the peak structure for large MA0 in figure 2 is absent, and

the size of the correction is 2-3% for 300 GeV <∼ MA0
<∼ 1000 GeV, as shown in figure 3.

However, this approximation breaks down at small values of MA0 where the corrections

due to Higgs mixing become large. Note that in any case h0 is SM-like at large MA0 so

that h0 production is most likely of no phenomenological relevance.

The two-loop improvement of the self-energies of the CP-even Higgs bosons, as con-

tained in the Z factors of (2.41) and (2.42), has a negligible effect on δMSSM for H0 and A0

production. Only for h0 production and MA0
<∼ 350 GeV the difference between a one-loop

and two-loop treatment is larger than 1% and can reach the 5% level for MA0 ≈ 200 GeV.

However, the two-loop improvement plays an important role for the precise determination

of the Higgs-boson pole masses entering the kinematics of the process [40].

It is important to emphasize that the size of the non-universal MSSM one-loop correc-

tions δMSSM at large tβ is quite sensitive to the choice of the bottom-mass input value. This

is caused by terms that grow as m2
b t2β but are not included in the summation of tβ-enhanced

terms. For the SPS 4 scenario, the b-mass input sensitivity is shown in figure 4.

In the DR scheme for tβ (upper panel of figure 4) the absolute size of the non-universal

corrections varies between approximately zero and −6% for H0/A0 production, depending

on whether a massless approximation, the running mass or the pole mass is chosen as b-

mass input. The sensitivity is even larger for the light Higgs h0. However, for h0 production

δMSSM depends very sensitively on the definition of αeff , as mentioned before. Although we

assume that the running mass including the summation of tβ-enhanced terms is a sensible

choice, the sensitivity of the NLO correction to the b-mass input constitutes a theoretical

uncertainty which can not be resolved at the NLO level.

Comparing the DR and the DCPR schemes for the renormalization of tβ, the size of

the corrections is accidentally very similar if the running b-mass is chosen as an input. The
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Figure 4: Full MSSM corrections δMSSM = δMSSM−QCD + δMSSM−weak defined relative to σIBA as

a function of the mb input in the DR scheme (upper panel) and DCPR scheme (lower panel) for

tβ . The corrections for H0 and A0 lie on top of each other.

same observation holds for the Higgs masses, which differ by less than 500 MeV. However,

because of the large mb dependence the corrections in the different renormalization schemes

can differ significantly in general. This can be seen by comparing the upper and lower

panels of figure 4. For the Higgs masses we also find larger differences up to 4 GeV for

mb = 4.2 GeV. Of course, the large scheme difference of the relative correction is partially

compensated by the corresponding change in the DCPR input value for tβ to be calculated

from the DR value tβ = 50. In the massless-b approximation, we find tβ = 51.78, while

tβ = 47.00 for mb = 4.2 GeV. The resulting scheme dependence of the total cross-section

prediction for H0 and A0 production is thus moderate (below 1%) even for large mb. For

h0 and large mb, the residual scheme dependence can reach up to 3%. To compare the
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cross sections, we have used the on-shell mass for A0 as computed in the DR scheme as

input in both schemes.

We have verified that the size of δMSSM for H0 or A0 production does not change

significantly when the input values of the soft breaking parameters for the sfermions or the

soft breaking parameters for the gauginos are varied around their SPS 4 values by up to a

factor of 2, unless some sparticles become unreasonably light.

Results for the alternative benchmark scenario SPS 1b with tβ = 30 are presented in

appendix B. The conclusions reached for the SPS 4 scenario essentially hold for SPS 1b as

well.

4. Conclusions

We have performed a complete calculation of the O(αs) and O(α) corrections to associ-

ated bottom-Higgs production through bb̄ fusion in the MSSM. This next-to-leading order

prediction is improved by including two-loop corrections, as provided by FeynHiggs, and

by the known summation of tβ-enhanced corrections. We have presented details of the

calculation and discussed numerical results for MSSM Higgs-boson production at the LHC

in two supersymmetric scenarios. The leading supersymmetric higher-order corrections, in

particular the tβ-enhanced contributions, can be taken into account by an appropriate def-

inition of the couplings and the running b-mass in an improved Born approximation. The

remaining non-universal corrections are small, typically of the order of a few percent. The

quality of an improved Born approximation, however, can only be judged with a full O(αs)

and O(α) calculation. Although we assume that the running mass including the summa-

tion of tβ-enhanced terms is a sensible choice for the input b-mass, alternative choices can

lead to non-universal corrections as large as 10%.

With the results presented, the impact of the complete MSSM corrections to neutral

Higgs boson decays into bottom quarks might also be updated.

Our results show that the difference between a properly defined improved Born approx-

imation and the complete NLO calculation, which is improved by leading NNLO effects,

is smaller than other theoretical uncertainties resulting from residual scale dependences,

errors on the b-quark mass, and parton distribution functions.
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A. SPS benchmark scenarios

For the SPS benchmark [38] scenarios discussed in this work we use the following input for

tβ, the mass of the CP-odd Higgs boson MA0 , the supersymmetric Higgs mass parameter µ,

the electroweak gaugino mass parameters M1,2, the gluino mass mg̃, the trilinear couplings

Aτ,t,b, the scale, at which the DR input values are defined µR(DR), the soft SUSY-breaking
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h0 H0 A0

σIBA[pb] 0.59 1.88 1.88

δQCD[%] 35.98 19.02 19.02

δQED[%] -0.13 -0.26 -0.26

δMSSM−QCD[%] -0.06 0.11 0.11

δMSSM−weak[%] 2.73 -0.35 -0.35

Table 4: LO cross section in the improved Born approximation σIBA as defined in (2.53), as well

as corrections δ relative to σIBA, for pp → (bb̄) h0/H0/A0+X at the LHC (
√

s = 14TeV) in the

SPS 1b scenario. See table 2 for details.

parameters in the diagonal entries of the squark and slepton mass matrices of the first and

second generation Mfi (where i = L,R refers to the left- and right-handed sfermions,

f = q, l to quarks and leptons, and f = u, d, e to up and down quarks and electrons,

respectively), and the analogous soft SUSY-breaking parameters for the third generation

M3G
fi :

SPS 4 SPS 1b

tβ 50.0 30.0

MA0 [GeV] 404.4 525.5

µ[GeV] 377.0 495.6

M1[GeV] 120.8 162.8

M2[GeV] 233.2 310.9

mg̃[GeV] 721.0 916.1

Aτ [GeV] −102.3 −195.8

At[GeV] −552.2 −729.3

Ab[GeV] −729.5 −987.4

µR(DR)[GeV] 571.3 706.9

SPS 4 SPS 1b

MqL[GeV] 732.2 836.2

MdR[GeV] 713.9 803.9

MuR[GeV] 716.0 807.5

MlL[GeV] 445.9 334.0

MeR[GeV] 414.2 248.3

M3G
qL [GeV] 640.1 762.5

M3G
dR [GeV] 673.4 780.3

M3G
uR [GeV] 556.8 670.7

M3G
lL [GeV] 394.7 323.8

M3G
eR [GeV] 289.5 218.6

B. Results for SPS 1b

In the SPS 1b scenario the two-loop Higgs masses are given by Mh0 = 117.67 GeV, MH0 =

525.69 GeV, and MA0 = 525.66 GeV in the DR scheme for tβ. Here, the masses in the

DCPR scheme also differ by not more than 500 MeV and the discrepancy does not increase

as drastically as in SPS 4 when the input value for the b-mass is changed with respect to

its default value mb = 2.30 GeV. As can be seen from table 4, the non-universal corrections

in the MSSM for A0/H0-production are even smaller than for SPS 4.

Because the masses of A0/H0 are larger and tβ = 30 is smaller than in SPS 4, the total

production cross sections are also smaller. The cross sections including the cumulating

effect of the different higher-order corrections are shown in table 5.

The generic structure of δMSSM as a function of MA0 with all other SPS 1b parameters

fixed, figure 5, does not differ from SPS 4.
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h0 H0 A0

mb[GeV] σ[pb] mb[GeV] σ[pb] mb[GeV] σ[pb]

QCD 2.79 0.85 2.50 2.64 2.50 2.64

+QED 2.79 0.84 2.50 2.63 2.50 2.63

+∆g̃
b 2.76 0.83 2.08 1.82 2.08 1.82

+∆weak
b 2.77 0.83 2.30 2.24 2.30 2.24

+ sin(αeff ) 2.77 0.80 2.30 2.24 2.30 2.24

full calculation 2.77 0.81 2.30 2.23 2.30 2.23

Table 5: The NLO MSSM cross section pp → (bb̄) h0/H0/A0+X at the LHC (
√

s = 14TeV) in

the SPS 1b scenario. See table 3 for details.
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Figure 5: Full MSSM corrections δMSSM = δMSSM−QCD + δMSSM−weak defined relative to σIBA as

a function of the MA0 pole mass in the DR scheme for tβ. All other MSSM parameters are fixed to

their SPS 1b values.
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